Algèbre liénaire

Espaces vectoriels - Applications linéaires

cf pgm précédent

Matrices

Tout le cours de pcsi (plus de matrices échelonnées réduites) + Matrices définies par blocs, opérations.

Sous-espace vectoriel stable par un endomorphisme, endomorphisme induit (les étudiants doivent savoir traduire matriciellement la stabilité d'un sous-espace vectoriel par un endomorphisme et interpréter en termes d'endomorphismes une matrice triangulaire ou diagonale par blocs.

Si u et v commutent, le noyau de u est stable par v.

Matrices semblables (révisions de pcsi). (La notion de matrices équivalentes est hors programme.)

Trace d'une matrice carrée. Linéarité; trace de la transposée d'une matrice, du produit de deux matrices.

Invariance de la trace par similitude. Trace d'un endomorphisme d'un espace de dimension finie.

Polynômes d'endomorphismes et de matrices carrées

Définition, polynôme annulateur (application au calcul de l'inverse et des puissances), stabilité de P(u) par u; $P(u) \circ Q(u) = Q(u) \circ P(u)$.

Déterminant de Vandermonde et polynômes interpolateurs de Lagrange

Séries numériques

Révisions du cours de pcsi sur les séries à termes positifs.

Questions de cours

- Propriétés de la trace (avec dém.)
- Pour un projecteur p, tr(p) = rg(p) (dém)
- Déterminant de Vandermonde (dém)
- Soient $f: x \mapsto \frac{1}{1+x}$, $(a_0, a_1, a_2) = (0, 1, 2)$ et $\forall i \in \{0, 1, 2\}$, $b_i = f(a_i)$. Déterminer le polynôme interpolateur de Lagrange aux points $((a_i, b_i))_{0 \le i \le 2}$.
- Soit E un e.v. de dimension 2n et $f \in \mathcal{L}(E)$ telle que $\operatorname{rg}(f) = n$ et $f \circ f = 0$.

Montrer qu'il existe une base \mathcal{B} de E telle que $Mat_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 \\ I_n & 0 \end{pmatrix}$.

- Les différents « outils » pour étudier une série à termes positifs
- On considère la suite $(u_n)_n$ définie par $\forall n \in \mathbb{N}^*, \ u_n = \sum_{k=1}^n \frac{1}{k} \ln n$ En utilisant le lien suite-série, montrer que $(u_n)_n$ converge.

Prévisions pour la semaine du 4 au 8 novembre 2024

Séries numériques.